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The breakdown of the no-slip condition at fluid—solid interfaces generates a host of
interesting fluid-dynamical phenomena. In this paper, we consider such a scenario by
investigating the low-Reynolds-number hydrodynamics of a novel ‘slip—stick’ spherical
particle whose surface is partitioned into slip and no-slip regions. In the limit where
the slip length is small compared to the size of the particle, we first compute the
translational velocity of such a particle due to the force density on its surface.
Subsequently, we compute the rotational velocity and the response to an ambient
straining field of a slip-stick particle. These three Faxén-type formulae are rich in
detail about the dynamics of the particles: chiefly, we find that the translational
velocity of a slip—stick sphere is coupled to all of the moments of the force density on
its surface; furthermore, such a particle can migrate parallel to the velocity gradient in
a shear flow. Perhaps most important is the coupling we predict between torque and
translation (and force and rotation), which is uncharacteristic of spherical particles in
unbounded Stokes flow and originates purely from the slip—stick asymmetry.

1. Introduction

The quintessential boundary constraint in fluid dynamics is the ‘no-slip’ condition
which states that a fluid element ‘sticks’ when in contact with a solid surface (see
e.g. Lamb 1993 and Batchelor 2000). However, the physical origins of this condition
are a point of controversy and measurements of its breakdown have been reported
by many, including Thompson & Robbins (1990a) and Zhu & Granick (2002). The
Navier slip condition, a classic albeit limited model of this breakdown, was explored
in detail by Thompson & Troian (1997). This model introduces the notion of a
scalar slip length, /, which relates linearly the fluid velocity along the interface to the
normal component of the shear stress at the interface. Clearly, the no-slip condition
is a special case of this model where 4 = 0. Although the Navier slip condition is
rather simple, experimental and theoretical measurements of slip lengths for various
fluid—solid interfaces are common (see e.g. Hocking 1976; Thompson & Robbins
1990b ; Einzel et al. 1990).

In this article, we consider a novel spherical particle divided by a plane into two
‘faces’ such that the slip length is zero on one face of the particle while there is a
finite (but small relative to the particle size) slip length on the other. Naturally, such
particles will stick to the fluid more on one part of their surface than the other. Such a
particle could be manufactured by coating or roughening an initially uniform spherical
particle asymmetrically or by bonding two hemispheres of materials with different slip
lengths. Since the construction of ‘Janus’ or two-faced particles at colloidal scales is
already possible (Cayre, Paunov & Velev 2003; Nie et al. 2006; and Perro et al. 2005),
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we anticipate that the fabrication of particles with the aforementioned slip—stick
quality is indeed feasible.

Particles possessing non-uniform surface, or interfacial, properties have been studied
extensively in the context of phoretic motion (see Anderson 1989 for a review). In
such situations the gradient in an imposed potential — e.g. voltage for electrophoresis,
temperature for thermophoresis, or solute concentration for diffusiophoresis — drives
a fluid flow in a region adjacent to the fluid—particle interface. When the thickness of
this region is small compared to the particle size, the flow may be interpreted as an
effective ‘slip” velocity, which is equal to the product of the local tangential gradient of
the potential and a slip coefficient, or mobility, that plays the role of a slip length. (In
electrophoresis, for instance, the slip coefficient is proportional to the zeta potential
of the particle surface.) The slip flow causes the particle to move such that there is
no net force or torque on the particle plus interfacial (slip) layer. For example, a
spherical particle with uniform slip coefficient translates along the gradient of the
imposed potential, but does not rotate. However, if the surface symmetry is broken by
a non-uniform slip coefficient, the particle may translate perpendicular to the gradient
of the potential and also rotate (Anderson 1985). In §2 we find analogous results
for our ‘slip-stick’ particle; namely, in steady translation the fluid exerts a non-zero
torque on the particle, and the force on the particle is not solely along the direction
of motion. However, it is important to note that for our slip-stick sphere a gradient
in an imposed potential is not required to drive the particle motion.

The design of particles and surfaces with discontinuous changes in slip coefficient
has received considerable attention recently. For example, Yariv (2004) has considered
electro-osmotic flow past a planar wall with a jump in zeta potential. Moreover,
as shown by Golestanian, Liverpool & Ajdari (2007), particles that generate their
own concentration gradients (via e.g. a surface catalyzed chemical reaction) may be
designed to move autonomously, or ‘swim’, via appropriate patterning of their slip
coefficient. On a rather different note, You & Moin (2007) investigated a circular
cylinder whose surface is partitioned into alternating stick and slip regions, as a
means of drag and lift reduction in high Reynolds number (= 300) flows.

The hydrodynamics of ‘slip—stick’ particles promises to be interesting; for instance,
as the slip length increases, the fluid’s resistance to the motion of the particle decreases.
Undoubtedly, the drag coefficient is bounded from above by the drag on a solid
spherical particle and from below by the drag on a spherical bubble. Furthermore,
the two-facedness of the particle breaks the fore—aft symmetry typically associated
with spherical particles in Stokes flow. This introduces a coupling between rotation
and translation — a feature often associated with chiral bodies in low Reynolds
number flows (e.g. a corkscrew). In fact, slip-stick spheres begin to have more in
common with ellipsoids and other axisymmetric bodies than (uniform) spheres, with
the slip length, A, playing the role of an eccentricity. As the slip length grows, the
symmetry is further broken and the particle appears increasingly eccentric from a
hydrodynamic viewpoint. We formalize these phenomenological ideas in a Faxén-type
formula relating the translational velocity of the particle to the various moments of
the force density on its surface, as well as the effect of an ambient flow field (i.e.
another flow field which exists when the particle is not present and satisfies the Stokes
equations). We calculate two additional Faxén formulae coupling the rate of rotation
and the effect of a straining field to the moments of the force density on the particle
and an ambient flow field.

The rest of the article is organized as follows. In §2, we define the Navier slip
condition explicitly and show that when the slip length is small compared to the size
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of the particle, the condition reduces to proportionality between the slip velocity and
the velocity gradient normal to the surface. In this section, we also determine the
appropriate boundary conditions for the velocity field on the surface of a slip—stick
sphere. In § 3, we study the problem of a slip—stick sphere translating at low Reynolds
number. We determine an analogous Faxén’s first law for the slip—stick sphere which
couples the translational velocity of the particle to the moments of the force density
on its surface as well as the effects of an additional, ambient Stokes flow velocity
field. In §4, we generate the analogous Faxén’s second law by studying a slip—stick
sphere in a linear flow. These expressions couple the rate of rotation of the particle
and the rate of strain in the fluid to the force density on the particle’s surface and
the effects of an additional ambient Stokes field. We conclude with some thoughts on
the experimental realization of these results and a brief discussion of anisotropic slip
lengths with other particle shapes as well as possible extensions to the present work.

2. Boundary conditions for the flow around a slip—stick sphere
The Navier slip condition may be written down explicitly as

(D u(x) = 260n 1 (x), (2.1)
n

where u(x) is the velocity of the fluid in the frame of reference of the particle, x is a
point on the surface, 1 is the viscosity of the fluid, n and ) are unit vectors normal
and tangential to the surface respectively and t is the shear stress in the fluid (note
that the double-dot-product used here is defined so that the indices are contracted
in the ‘inside-out’ fashion such that in index notation A:B = A;;B;;). One can show
quite simply that for any curvilinear surface whose smallest radius of curvature, R,
is much larger than A (i.e. 2/R < 1), the Navier slip condition reduces to a linear
relationship between the velocity at the surface and the normal velocity gradient to
O(A/R):

1N\ 2
19 u(x) = 2"n:V.u(x)+ 0 (;) - (2.2)

We illustrate this explicitly for the case of a spherical surface with tangential vectors
in the polar and azimuthal directions, ) and #? (sometimes denoted e, and e;). By
substituting into equation (2.1) the shear stress of a Newtonian fluid and asserting
that the particle is impenetrable, we rewrite that equation as

Doy =) (t(i)n + nt(i)) :Vu

= [(8“9 - L‘“) 5 + (8”‘” - ”‘”) 54 , (2.3)
ar r or r

where uy and uy are the polar and azimuthal components of the velocity field on the
surface of the particle and r is the radial coordinate. The above expression leads to
one particularly useful conclusion: that both uy and u, are quantities which scale as
O(A/R), where R is the radius of the particle. The derivatives of these two velocities
with respect to r on the surface of the particle are still O(1) quantities however, so
we can write the Navier slip condition on the surface of a sphere as

. ug ou 2\
t(l) ¢ =) 78,‘ 7¢ (Si 0 - N 24
u(x)=21 { 5, it + oy 2] + <R> (2.4)

which is identical to equation (2.2).
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FiGure 1. Definition sketch of a slip-stick sphere characterized by radius a, dividing angle «,
translational velocity U and directional vectors v, Fluid slips over surface S; and sticks over
surface Sy. The vectors n, t1) and #? are the spherical unit vectors (often called e,, e, and e,

respectively) of the right-handed coordinate system formed by the unit vectors v(®).

One simple physical interpretation of this result is that to O(4/R) and on the scale
of the slip length, a surface with relatively large curvature is essentially flat. In the
case of colloidal spheres, the radius of curvature is characterized by the radius of
the colloid, a. Taking the limit that the slip length is small relative to the radius of
the particle is reasonable since measured slip lengths on the order of tens of nano-
metres are typical (Zhu & Granick 2002) while colloidal particles are usually microns
in size. Since we have made this approximation, all subsequent expressions are regular
perturbation expansions in slip length which we have truncated at the O(1/a)* level.

We are now in a position to define an explicit set of boundary conditions for the
velocity field surrounding a slip—stick sphere, in the frame of reference of the particle.
We divide the surface of the particle into two faces (slippery and sticky, see figure 1)
and write down the conditions on the fluid in contact with each face separately such
that

n-u(x)=0,
£ u(x) = An:Vou(x), i=1,2, } (2:5)
on the slippery face of the particle denoted S;, and
u(x) =0, (2.6)

on the sticky face of the particle, denoted S,. The vectors n and ) are the unit
normal to the sphere and the ith unit tangential vector to the sphere respectively. In
the next section, we proceed by describing the flow around a translating slip—stick
particle using the boundary-integral formulation for Stokes flow. This leads quite
naturally to an extension of Faxén’s first law to O(4/a) that relates the translation of
the particle to various moments of the force density.

3. Faxén’s first law for slip—stick spheres

A slip—stick sphere of radius a translating with velocity U at low Reynolds number
generates a fluid velocity field in the frame of the moving sphere denoted u(x),
where x is the position vector and x, denotes the centre of the sphere. Such a
sphere is illustrated in figure 1, with the division between slip and stick faces being
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characterized by the polar angle «, so that when o = O the entire sphere is no-slip
and when o = n/2 the sphere is evenly divided into slip and stick halves. Associated
with this sphere are three unit vectors: v, which is normal to the plane dividing the
sphere and pointing into the slippery face (S;) and v'" and v® which together with
v® describe a mutually orthonormal right-handed system of coordinate axes.

Without loss of generality, the velocity field due to the translating sphere can
be written in three parts: a contribution due to the translational frame, —U; a
contribution due to some other ambient field, u™(x), perhaps due to the presense of
another particle, which itself satisfies the Stokes equations (nVu™ = Vp*, V- u* = 0);
and a contribution due to the presence of the particle which we call the disturbance
velocity, u'(x), namely

u(x)=—-U+u (x)+ v (x),

/ (3.1)
W)= [ W= ) () + P+ u() K (x = y) -n] d5,
NER)
where J(r) is the stokeslet or Oseen tensor:
. 1 (S,‘j rirj
Jij(r) = 87 < T ) , (3.2)
K(r) is the couplet:
3 ririrg

Kiji(r) = an rj5 ) (3:3)

f(y) is the force density on the surface of the particle at point y, and P is a static
pressure due to the rigid-body motion of the particle in the ambient field. This is
just a statement of the boundary-integral solution to the Stokes flow equations (see
Ladyzhenskaya 1963). The disturbance velocity u'(x) describes the manner in which
the force density on the surface of the particle changes in order to satisfy the boundary
conditions on its surface. One can show quite easily that the static pressure, as in all
Stokes flows, makes no contribution to the dynamical behaviour of a rigid particle.
We include it in equation (3.1) for completeness, but the integral of the dot product
between the normal and the stokeslet over the surface of a sphere is identically zero,
so P does not affect the flow. The contribution to u'(x) due to K(r) comes from the
double-layer (or force dipole) distribution on the particle’s surface, a quantity which
is zero for all rigid no-slip particles, but makes a finite contribution in this case and
in some less exotic circumstances such as flow around a viscous drop.
We proceed by integrating u(x) over the surface of the particle such that

/ u(x)ds,
NE

- / (—U () + / Wi — y)- £(3) + uly) K (x — y) -n] dsy) ds..
NE NE
(3.4)

To simplify the left-hand side, we substitute the boundary conditions on the velocity
field into the integral over u(x). That is, we substitute the tangential components
of the slipping field, A(tV¢D) + ¢2¢2)n:V, u(x), for u(x), and reduce the limits of
integration to include only the slipping face since the velocity field is exactly zero on
the sticking face. Now, we know u(x) explicitly in terms of equation (3.1), so

V.u(x) = V,u®(x) + V,u'(x). (3.5)
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Additionally, we directly evaluate the well-known integrals of U, u*(x) and the
stokeslet over the surface of the particle such that

/ U dS, = 4na’U, (3.6)
NER Y
a2
/ u”(x)ds, = 4na? <1 + 6V§) u”(x)| (3.7)
NER)) X0
2a
J[ dw=ssoasias =30 [ sas, (3.8
NEM) n NER

where the integral of the force density over the surface of the particle is the total
force on the particle — see e.g. Kim & Karrila (1991, 2005 pp. 73—77) for a detailed
explanation. We also use a Taylor expansion of K(x — y) with respect to x about x
to make the double-layer contribution more tractable, as the integral with respect to
x over the double-layer contribution becomes

a2
/ u(y)- (1 + Vi) K(x—y)
NEN 6

Because K(r) is a solution of the Stokes equations and therefore is biharmonic, this
truncated Taylor expansion is in fact exact. The tensor K(x¢o— y)-nr and its Laplacian
can be computed directly in terms of tensorial products between spherical normal
and tangential vectors. We contract this with the surface velocity by referring back to
the boundary conditions in equations (2.5) and (2.6), so that the integral is reduced to
one over the slipping surface of the particle alone, and only tangential components
of the velocity field, u(y), remain, such that when y is a point on the surface of the
particle

‘nds,. (3.9)

X=X0

u(y) - K(xo—y)-n=0, (3.10)
and

u(y) V2 K(xo — y)*m = =——u(y). (3.11)

Now we simply substitute our original definition of the velocity field u(y) (3.1) into
the above to complete the first part of our derivation. These manipulations result
in an expression relating the translational velocity of the particle to four quantities:
(i) the translational velocity of a no-slip particle due to a force F (Stokes’ law), (ii)
a correction to Stokes’ law due to the slip condition, (iii) the effect of the ambient
field #™(x) on a no-slip particle, and (iv) a correction to that effect arising from the
slipping face, namely

F y)

2
/ PP p Vo' (x)dS, + <1 + aVi) u™(x)
S

- 6mna  2ma> 6 o
—21:;2/ PP n V. u*(x)ds,. (3.12)
M

Note that the repeated Greek index 8 means summation over the index values (1, 2)
only such that the integrals amount to weighted averages over both of the diagonal
angular dyads, V¢V and t®¢?. It is clear that when either « = 0 or 4 = 0, the
classic Faxén formula for the translation of a no-slip sphere is recovered.

At this point we have reached an impasse. To move forward, we need to refer back
to the boundary conditions over the slipping face and recognize that gradients in
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u'(x) associated with the double-layer contribution to the force density on the particle
are in fact O(4/a). In order to integrate the contribution due to the double layer (the
second term in (3.12)) and close the expression, we again consider the case where
the slip length is small relative to the radius of the particle (4 < a) and discard all
terms of O(4/a)>. To move ahead we need to compute the surface integrals over the
ambient, u®(x), and the disturbance fields, #'(x). The computation of these integrals
is straightforward and is explained fully below.

To compute surface integrals of the disturbance field over the slippery face of the
sphere, we refer back to the integral-stokeslet formulation for u'(x). We substitute
equation (3.1) into the correction to Stokes’ law (the second term in (3.12)) and
discard the double-layer term K(r) as this represents an O(A/a)’ contribution to the
result. We then reverse the order of integration, re-expressing the correction as

/ tP¢Pp V. u'(x)dS, =/ A(y)- f(y)dsS,, (3.13)
Si S1+852
where
A(y) = / tP PV, Jd(x — y)ds,. (3.14)
Si

In general, A(y) is difficult to compute since the normal and tangential vectors are
radial functions centred on x(, while the stokeslet is centred on y. To avoid such
complications, we perform a multipole moment expansion of equation (3.13) about
the centre of the particle, x,

1
| A5 £, = A, F 4 TV < A)
NER))

X0

+1ls: (VyA(y) + [VyA(y)]T>

5 +oe, (315)

X0

where F is the total force, T is the torque and S is the stresslet on the particle. We
define force moments these as follows:

F={ fds, (3.16)
NER
T= / (y — x0) X F(»)dS,. (3.17)
NE )
1
s=1 / (y — x0) F(3) + F(3) (y — x0) dS,. (3.18)
2 NE

Not only does this approach simplify matters, but it also provides physical insight
into the effects of different force moments on the particle. For example, it is clear
that the translational velocity of a slip—stick particle is coupled to all of the moments
of the force density on its surface. This stands in contrast with the translation of a
no-slip sphere which is coupled only to the total force (the same is true of a bubble).
It is the symmetry-breaking aspect of slip—stick particles that leads to couples with
higher-order force moments. With this expansion, the calculation of A(y) and its
higher-order derivatives at the centre of the slip—stick particle is all that is needed
to describe the translation in an otherwise quiescent fluid. The integrals involved
in computing these terms are simply averages of the normal and tangential vectors
over the slippery face of the particle weighted by derivatives of the stokeslet. For
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completeness, we illustrate the computation of A(x() for an arbitrary division angle «:
2n o
A(xy) = —/ / t?tf sin(0) do d¢
o Jo
1

= 2 [(cos3 (o) +3cos(a) — 4) 8;; +3cos () sin’ (oz)8,-38j3] v (3.19)

Similar calculations may be performed to compute the derivatives of A(y) as well.
In treating the correction to the response of a no-slip particle to the ambient field

u”(x), we perform a Taylor expansion about the centre of the particle such that

© k
/ t<ﬁ)t<ﬂ>n:vxu3°(x)dsx=z% / PP (nytrds, o (Vo)ku™(x)| ,  (3.20)
k=0 /S

Si X0

where O is the kth-order dot product and (V,)* is the kth-order gradient. This
Taylor expansion does not truncate for an arbitrary #™(x), but since any velocity field
which satisfies the Stokes equations is biharmonic, physically practical disturbance
fields like those generated by the presence of other particles must decay. This means
that the higher-order derivatives of u*(x) will be smaller than the lower-order ones.
Therefore, one may reliably approximate this series simply by truncating it. Similar
to the correction for the force moments, the integrals involved in this expansion
amount to averages of the normal and tangential vectors over the slippery face of
the particle. For example computing the k = 0 term in (3.20) is done quite simply by
considering the following integral where S; corresponds to division angle «:

2n o 2
/0 /0 t*tPna’*sin(0) do dg = —’% [2sin* () (8813 + 88 3)
+ (7 + cos(2a)) sin*(@)8;483 + (3 + 5 cos(2a)) sin*()8;38 ;3843 ] v 0. (3.21)

We proceed by using these simplifications to assemble a Faxén formula describing the
translation of a slip—stick sphere.

Consider a slip—stick particle with a specific division angle «. The integrals described
above are readily computed for any given o bounded by zero and m. We select a few
representative division angles and discuss the resulting expressions for the translational
velocity. First, consider a symmetrically divided, or ‘half and half, slip-stick sphere
(¢ = m/2). The Faxén formula for such a particle is the expanded form of equation
(3.12),

U= ! 1+i F—l—Lerv(")vm'T—l—---—{— 1+a—2V2 u”(x)
6nna 2a 8mnad 6

x0
la

2.0
V()

+-, (3.22)

X0

A A A
-2 (B — oMy 4y V()|

where F and T are the force and torque on the particle, I is the identity tensor, €3;
is the permutation tensor and the repeated Roman indices (i, j) mean summation
over the index values (1, 2, 3). Note that the ellipses here represent the contributions
from higher-order force moments and higher-order derivatives of the ambient field
respectively. From this expression it is clear that the translation of an evenly divided
slip—stick sphere is coupled to a torque in any direction other than v, the axis about
which the particle is symmetric. It turns out that an evenly divided slip—stick sphere
is a special case and has particularly ‘nice’ symmetry; i.e. the translational velocity
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due to either a force F or an applied mean pressure gradient,

Viur(x)|, = 717 V.p”(x)| (3.23)

X0

points soley in the direction of these forcings. Note that although the Navier slip
condition involves only tangential strain of the fluid at the surface of the particle, it
results in a correction to the effects of the mean pressure gradient (the last term on
the right-hand side of (3.22)), which is an applied normal stress. Now consider the
Faxén formula for a slip-stick particle with an asymmetric division (« = 1/3):

1 A 3) Lo
U = T4+ — (191= 99PN | - F i (O VI ST
6mna [ + 64a ( vo) + 64nna3€3]v Y +
a’ 2 0 34 (3) (i) 5,(3) (i) (3)5,(3),,(3) o0
+ (14 va u”(x)| — 8 (131 — 3009y — Py 1V 4 (x)
X0 X0
‘a 3471 — 13503 p® 2,0 3la 1310303 1 553333
_3840( — 13509 - Viu™(x) _ﬁ[ v + 500ppBly
X0

—3 (009 4 oy Oy 1Y, u (x)| A (3.24)

X0

The responses to the total force and the mean pressure gradient no longer point
in the same direction as the applied forcings. Instead, there is a correction due
to the asymmetry of the division such that a force/mean pressure gradient along
v® propels the particle more slowly/quickly than if the same strength force/mean
pressure gradient were pointing in any other direction. The increase or decrease of
the applied force and mean pressure gradient along the v axis is characteristic of
all asymmetrically divided slip—stick particles and more generally of axisymmetric
particles (such as ellipsoids) in Stokes flow.

In Appendix A, we take a slightly less robust approach to this problem by
considering the uniform streaming flow past a slip-stick sphere (equivalent to
translation strictly along the axis v3) via the stream function ¢ and direct solution of
the Stokes equations to O(4/a). We explicitly compute the first term in (3.22) using
this approach and find that it is the same. From this approach, we can produce a
plot of the streamlines surrounding a slip—stick sphere with any division angle, .
In figure 2, we illustrate two such plots of the streamlines around slip—stick spheres
with division angles of ©/2 and 2rn/3. In this figure, the break in fore—aft symmetry is
clear for each division angle and is made obvious by noting where streamlines enter
and exit the dotted half-circle surrounding the particle. Even though the scale of the
perturbation to the no-slip boundary condition is set by 4/a, which is reasonably small
in this figure, it is plain to see that the perturbation to the flow field is significant over
a least two particle radii. This suggests that even a small asymmetry in the slip length
should have measurable consequences for the hydrodynamic interactions between a
slip-stick particle and another body. However, this problem is considerably more
difficult to study analytically, and we shall not pursue it here.

4. Faxén’s second law for slip—stick spheres

Now consider a slip-stick sphere in a linear flow denoted I' - (x — x¢), where I
is a constant velocity gradient satisfying continuity (i.e. the tensor is traceless). This
linear field consists of two contrasting parts: the symmetric part of I' represents the
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3a T

I i .
—3a —2a —a a )\ 2a 3a

FIGURE 2. The streamlines surrounding two slip—stick spheres with slip length 2 = a/3
indicated by the dotted half-circle and division angles n/2 and 2n/3. The particles are
translating along the axis v3 in a co-moving frame so that the flow field is strictly axisymmetric.
The regions S; and S, correspond to the slippery and sticky faces of the particle respectively.
The far-field asymmetry in the streamlines is indicated explicitly by the horizontal dashed lines
which intersect streamlines on the right but fail to intersect them again on the left.

rate of strain and relates to fluid deformation, while the antisymmetric part of I'
represents the vorticity and reflects rigid rotation of the fluid relative to the particle.
In what follows, the rate of strain and vorticity will be decoupled in order to study
their effects on a slip—stick particle independently. We can use the same boundary
conditions on the surface of the particle as in the previous section, but this case is
defined by a slightly different velocity field (see (2.5) and (2.6)),

u(x) =TI+ (x —xo) +u”(x)+ ' (x),
W(x) = / W(x—3) (F5) + Pr)+u(y)-K(x—y) -n] dS,.  (41)
S1+82

Here, there is no need for a comoving frame since there is no uniform translation

of the far field. We proceed as in the derivation of the first Faxén law but take the
tensorial product between x and u(x) before integrating, namely

/ xu(x)dS,, (4.2)
NEM
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in order to study the first moment of the velocity field. We use a Taylor expansion of
xK(x — y) similar to the one in the equation (3.9) resulting in

2
/ (1 T “v§> Vou(y)-K(x—y)| -nds,, (4.3)
NER ) 10 X=X0 '

to simplify the double layer while also disregarding the static pressure, P, as it makes
no contribution to the problem after this integration. After substituting the boundary
conditions for the velocity field into the integrals as in the previous section, we recover
an expression for the shear rate, I':

A A €T S
—(1-=B) :r" =
( a ) 8mna’ + Dnna’

31 Cl2
- AtPn: V. (x)dS, + (1+—=V; ) V.u”
41ta3/51 n:vV.u (x) +< +10 o u (x)x=x0
_ 3 / AtPn V., u (x)ds (4.4)
4na’ Jg ! v
where the superscript 7 indicates transposition,
4
A= 3 (nt(’g) + t(ﬁ)n) + (nt(’g) — t(’g)n) , (4.5)
_ 3 / AtPnds,, (4.6)
dna® [

the stresslet (S) is the symmetric part of the first moment of the force density on the
particle’s surface, the fourth-order tensor I is defined such that I;;;; = §xé;; and € is
the permutation symbol. Note that we have already separated A into symmetric and
antisymmetric parts in anticipation of needing these parts individually. While this
expression is complicated, it is analogous to equation (3.12) and contains four parts
which relate to Faxén’s second law for rigid spheres and corrections to that expression
due to the slipping surface just as in equation (3.12). One additional complication
in deriving this Faxén formula is the inversion of a fourth-order tensor to isolate
the shear rate. To simplify things, we again consider the limit that the slip length is
small compared to the particle radius (4 < a) and note that taking an expansion and

truncation yields
-1 ) 2
(i-%) ~i+ AB—|—0</1>. (4.7)
a a a

Making this simplification and discarding terms of order (1/a)? and higher results in:

st T S 3
=1+ B) —~ AP0V 4 (x) dS,
(+a ><8ﬂna3+23°m7a3> 4@3/& (P, (x) dS
it ’ 32
+<H—B> : (1 +avi) V. u” (x)
a 10

4na’
We can separate the symmetric and antisymmetric parts of I' directly now. We
substitute equation (4.1) for u/(x) and truncate the expression at the O(Z/a)? level
by discarding any additional double-layer contributions as in equation (3.13). The

/ AtPn:V, u*(x)dS,. (4.8)
St

X=X(
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symmetric part of I' is the ambient rate of strain of the fluid, E*, namely

S A €T S
—E* =5——+ - (B+B"):
Dyna’ 2 (B+B) <8nna3 + 2301tna3>

3
_57'ca3/ (nt(ﬁ) + t(ﬁ)n) tPn :Vx/ J(x—1y) - f(y) dSy ds,
S1

NE
1 aZ 2 T o0 % T 0
+3 1+va (Vi+V)u (x)—l—;(B—i—B):qu (x)
X=X
32 (B) (8) (8) o
T (nt +t n) tYn:V,u” (x) dS,, (4.9)
Sy

where the operator V! is defined by VIu*(x) = (V.u*(x))" and B[, = Bju. If we
change our frame of reference by using the Galilean invariance of Stokes flow, then
we can write the antisymmetric part of —I' (in vector form) as the rate of rotation of

the particle, £, relative to half the ambient vorticity of the fluid, £2:

5 T A €T S
2 —-R°=_-——-—_—€:B:
8nna’ 2 ¢ <8nna3 + 2307:77513)

32 1
_ B £B), . . 1 0
A /Sl(nxt )t n.VX/ J(x—y) f(y)dSdex-l—ZVxxu (x)

NER xX=xo

A 612 2 0
_2(1(1—1_10VX> €:B:V,.u*(x)

3 / (n x £8) {Pn:V, u™(x)dS,.

- 3
r—xo dra’ g,

(4.10)

The integrals over the slippery face of the particle are computed in exactly the same
way as described in § 3. The explicit computation of these integrals is explained fully
in Appendix B.

To illustrate the utility of the preceding analysis, consider a torque-free slip—stick
sphere subject to an imposed external force. If the ambient fluid is quiescent, then
from equation (4.10) upon expanding the integral over the gradient of the stokeslet
about x, and integrating the tensor denoted n x t#¢#) over the slippery surface of
the sphere, the rotational velocity of the particle is

9 A S (i F
Q2= _%5(1 — cosza)e3ijv( Jp() . Gna’ (4.11)

From this expression, we can draw some conclusions. First, if the force acts along
the axis about which the particle is symmetric (F x v*® = 0), the particle will not
rotate. Physically, the fluid exerts a symmetric drag about v® on the surface of the
particle; thus there is no tendency for the particle to rotate. This situation is akin
to a see-saw with equal weights applied at its ends. Note that this is the ‘reciprocal’
relationship to equations (3.22) and (3.24), which state that a torque applied along
v® causes no translational motion. Similarly and second, if the particle is entirely slip
(¢ = m) or stick (o = 0), the particle will not rotate as there is no longer a coupling
between force and rotation (or torque and translation). Finally, we can see that if
the force acts along vV or v, the particle will rotate about the v® or —v) axes
respectively, regardless of the ratio of slip to no-slip areas (i.e. the value of «). From
this we conclude that the particle will continue to rotate until it assumes a terminal
orientation with its slip surface pointing in the same direction as the force. That is,
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orientations of slip-stick particles where F/|F| = —v® (stick-side translation) and
F/|F| = v (slip-side translation) are respectively the unstable and stable equilibrium
modes of translation for a sedimenting slip—stick sphere. Interestingly, the analogy
with axisymmetric particles breaks down here in the light of this preferred orientation,
since all sedimenting slip—stick spheres have an experimentally distinguishable fore
and aft.

One important question concerning a symmetry-breaking particle is whether or not
it will migrate along the gradient of a simple shear flow. Such a feature might be
particularly useful in microfluidic experiments or as a means of quantifying the degree
of slip that a particle possesses. There are two contributions from the linear field. The
first effect is direct and arises from the u®(x) terms in equation (3.12). In the context
of that first Faxén formula, a linear field is like another ambient field. Therefore, in
addition to the I' -x contribution typical of solid spheres, there is an O(4/a) part
that causes the particle to translate along the gradient in the shear field. The exact
direction of the translation is a function of the orientation of the particle, but may be
calculated directly once the division angle « is specified. The fourth terms in equations
(3.22) and (3.24), which are proportional to Vu®(xy), explicitly detail this effect for
particles with o« = n/2 and o = 1/3 respectively. The second effect of the shear field
comes from the change in the force density on the particle surface due to the gradient
in the field. To explore this, we need to determine whether the ambient straining field
E* couples to a force on the particle by performing a multipole expansion of the
third term in equation (4.9). From the expansion in Appendix B, we know that

32

Sma’

/ (nt(ﬂ) + t(’s)n) tPn:V.u (x)ds,
S

31
- U (nt® + () 19 s, | -
M

When the slippery face S; is defined by o € (0, 7®), the coupling to the force is
strictly non-zero, and the straining field causes the particle to migrate. The direction
of migration depends on the orientation of the particle relative to the straining field.
In simple shear flow, the field also causes the particle to rotate through a pair of
similar hydrodynamic couplings in equation (4.10) which reorient the slippery face and
change the direction of migration due to the flow. The reorientation and migration
causes a slip—stick particle to sweep out effective Jeffrey orbits in orientation space
like other axisymmetric bodies in shear flows. This is novel behaviour for a body that,
geometrically speaking, is radially symmetric.

In addition to the couple between force and rate of strain which drives the body
through the fluid, there is also the couple between force and vorticity which we
detailed in equation (4.11). This comes from the third term in equation (4.10) which
is analogous to the term reflecting the force rate of strain coupling in equation (4.9).
While complicated, it is clear that both ambient rate of strain and vorticity can direct
the motion of a slip—stick particle by generating a net force on the particle’s surface.
This does not happen for solid spheres or rigid bubbles in Stokes flow.

We omit the computation of these Faxén formulae for any specific slip—stick sphere
since its difficult to extract useful physical information from those expressions alone.
Instead we note that the computation of these terms is done in the same way as in § 3.
However, it is worth noting that one particular slip—stick particle, the symmetrically
divided one (e = m/2), has especially interesting properties. From the first Faxén
formula (3.22), we know that unlike other axisymmetric bodies, the resistance to

F
8nna?

o (4.12)
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motion of an evenly divided slip—stick sphere is isotropic (i.e. the force and velocity
on the body point in the same direction) just like a sphere and a few other special
shapes in Stokes flow such as a cube. In spite of this, an evenly divided slip—stick
sphere can still migrate parallel to the velocity gradient in a shear flow since the force
on the particle still couples to the straining field, i.e. equation (4.12) for « = 1/2 gives

3 F
3 |;/ (nt(ﬂ) + t(ﬂ)n) t(ﬂ) de . 72
Sma S1,a=TC/2 STCT]a
32 . ) o o
_ (#) 2)(3) 5, (i) (3) 5y(i) 5 (i) (#) 3y(#) ,(3) (3) 5,(3)5,(3)
= v + oYY — oW + v e -F. 4.13
80mna’ ( ) (4.13)

This makes the symmetrically divided slip—stick particle an idiosyncratic sort of
axisymmetric particle. When translating alone in an unbounded fluid, it appears to
be a sphere. However it traces out orbits as it translates in a shear flow.

5. Conclusions

We want to offer some quantitative incentive for the experimental study of slip—stick
particles. Consider the behaviour of a slip—stick sphere with « = /2, a = 1 pm and
A =10 nm in water at room temperature (these are typical quantities for colloidal
particles and slip lengths). Equation (3.22) predicts that a torque of magnitude
1073 pN pm about the axes v'") or v® would propel the particle with a translational
velocity of approximately 200 pms~'. The magnitude of this torque is on the order
of thermal stresses on the particle (k7). Similarly, equation (4.12) predicts that the
same particle in a shear flow, with shear rate 0.1 s~!, may be held fixed by a force
of approximately 1 pN (a typical magnitude in the colloidal regime). This same force
would propel our slip-stick particle at a little more than 50 pms~! through the fluid.
These are all reasonable values and suggest that our predictions could be observed
experimentally via particle tracking and laser tweezer microscopy.

We have computed three Faxén formulae coupling an ambient velocity field and
the force density on a slip—stick particle to its translational and rotational velocity
and the effects of a straining field. These expressions suggest that breaking the radial
symmetry of a spherical particle by altering the slip length along its surface produces
an object with interesting hydrodynamic properties. The hydrodynamic behaviour
of a slip—stick particle shares features with other axisymmetric bodies. Namely, the
resistance to motion of slip—stick particles along and perpendicular to the axis of
symmetry is different. While slip—stick particles are axisymmetric, they are not fore—aft
symmetric and therefore can migrate parallel to the velocity gradient in shear flows.
Perhaps these results can be used to determine if some other Janus, or two-faced,
particles slip asymmetrically. If one of these particles migrates in a shear flow, can we
infer something about its surface features?

Our slip-stick particle represents a minimal model for a host of particles with
asymmetric slip lengths. Only a few modifications to the procedure described in
this paper are necessary to study whole classes of slip—stick particles patterned
into a multitude of regions or patterned with a continuously varying slip length.
However, we believe our model in many ways still captures the essential hydrodynamic
features needed to study the more interesting collective behaviour of particles with
asymmetrical slip lengths. Might we expect that the many-body hydrodynamic
interactions among slip-stick spheres could lead to large-scale ordering or even
phase separation? Furthermore, what are the rheological properties of a suspension
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of these particles? These are problems whose study and eventual solution should be
aided by this analysis.

The authors gratefully acknowledge John F. Brady for his valuable comments and
assistance. They also thank Arun Ramchandran for a stimulating question. This work
was support in part by NSF grant CBET 0506701.

Appendix A. Uniform streaming flow past a stick—slip sphere

Consider a uniform streaming flow U = —Uv"® past a stick-slip sphere of radius a
and polar division angle « (figure 1). The flow is axisymmetric about v¥; hence, we
express the velocity field, u(x), in terms of the Stokes stream function ¥ (r, 6):

1 oy 1 oy

= == Al
" r2sinf 060 e rsiné or (AD)

The stream function solves E*yr = 0, where

ey
©or2 rz ou?’

(A2)
and u = cos6. Additionally, ¥ must satisfy the condition of uniform flow far from
the sphere:

Yy > U1 —p?) as r— o, (A3)

and the no-flux and stick—slip conditions (see equations (2.1) and (2.2)) on the particle
surface (r = a):

Y =0, (A4)
oy 0 . if —1<u<cosa
37: Ar? 0 —% if cosa < u < 1. (A3)
ar \ r? or

We non-dimensionalize by scaling lengths with the particle radius @ and the stream
function by Ua? (henceforth all quantities are dimensionless). For small slip length to
particle radius ratio, 1/a < 1, the stream function is expanded as ¢ = ¥+ (4/a)y +
O[(4/a)*]. The leading-order solution v is the well-known result for uniform flow
past a no-slip sphere (see e.g. Happel & Brenner 1986)

3 1
Yo = 4201 — i) (1—2r+2r3). (A6)

The O(J/a) stream function, v, satisfies E*y; = 0 subject to the boundary
conditions

Vi/r >0 as r — oo, (A7)
Yy =0 at r=1 (A)
oy 0 onr=1and -1 < u<cosa
LA 23(13%

or ririzar

):3(1—;&) onr=1and cosa < u < 1. (A9)
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The general solution for E*y; = 0 in spherical polar coordinates is (see p. 135 of
Happel & Brenner 1986)

V= (A" + B! + Gt + D) Gu(), (A 10)
n=2
where G,(u) is the Gegenbauer function of the first kind of order n. To satisfy the
far-field condition we require A, = C, = 0 for all n, and the no-flux condition on
r =1 gives B, = —D,.. From the stick-slip condition and the orthogonality of the
Gegenbauer functions the D, coefficients are given by

' Ga(u)Gu(p)

3
D,=-n(n—1)2n—1) du, (A11)
4 cosa 1— /’Lz
where we have used G, = (1 — u?)/2. For n = 2 a straightforward integration gives
D, =12 (3 —cosa+1icos’a), (A12)

and for n > 2 some lengthy algebra yields

2[1 — P,_3(cos )] 1— P, (cosa) 1— P, (cosa)
2n+1)2n—3) @n—1)02n—3) (n—1)2n+ 1)} ’
(A

3
D, = gn(n —1)2n—1) [

13)
where P,(u) is the Legendre polynomial of the first kind of order n. Thus, to first
order in A/a the stream function is

3r 1 29 (2 1 1
(22 L S (i — cos’ — -
Vs (r 2 2r> G+ <3 cos g cos a) (r r) G

+2 > Dur = G (A14)

Moreover, note that at large distances from the particle the streamfunction asymptotes
to the uniform flow as

v — Go(u)r? = 3 {—1 + 43 (2 —cosa + lcosﬁxﬂ Gyr(pn)r + 0 (Aro) ; (A15)
2 a4 \3 3 a

therefore, although the slip length is small relative to the particle size, the perturbation

to the flow field caused by the stick—slip asymmetry persists far from the particle.

In figure 2 we plot streamlines around the sphere as a function of « for 1 = a/3.
It is clearly seen that the heterogeneous stick—slip nature of the particle surface leads
to a breakdown in the fore—aft symmetry usually associated with particle motion at
low Reynolds number.

Finally, the force, F, exerted by the sphere in the v; direction is given by (see p.
115 of Happel & Brenner (1986)

6nnal 3.0 1—p? ’
2 1
—1- D)% (A16)
3 "a

For o = 0, where the fluid sticks over the entire sphere, we recover Stokes’ drag
law: F = 6mnaU. When o« = m/2 (a ‘half-and-half” stick-slip particle) we find
F = 6mnalU(1 — 2/2a) as predicted by the first Faxén formula (equation (2.7)). Lastly,
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for « = m we have F = 6mnaU(1 — 1/a) in agreement with equation (4-20.10) of
Happel & Brenner (1986) for a fluid that slips over the entire particle surface. Note
that D, is a monotonically increasing function of «, which simply means that the
more surface area available for the fluid to slip over, the less force that must be
exerted by the particle for it move with velocity U.

Appendix B. Expansion of spherical integrals for Faxén’s second law

As in §3 we need to compute several integrals over the surface of the particle via
multipole expansions. We use the same formulation as in equation (3.13) to compute
the integral

| am-sas. (B1)
NEM
where for the straining field (4.9):

A(y) = /(nt(ﬂ) +tPn) Pn V. Jd(x — y)dS,, (B2)
Sy
and for the rotational field (4.10):
Aly) = /(n x t9) PV, J(x — y)dS,. (B3)
M

The same multipole expansion of A(y) applies to these as to the A(y) in equation
3.15.

There are two integrals to compute the straining and rotational response of a
slip—stick particle to an ambient field. These are computed in exactly the same way as
in §3 using a Taylor expansion of the ambient field about the centre of the particle.
We give the expansions of these integrals explicitly here using the same notation:

/ (nt(ﬂ) + t(ﬁ)n) tPn V. u (x)dsS,

Si

© k
:Ziv/ (nt® + ¢Pn) P ()1 ds, O (Y, Fur(x)| (B4)
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—at (B)£(B) ()1 ket ku~
=Y 5 [nx PO w)ds, ot (V) e (x) (BS)
=0 . Si X0

Just as in §3, because Stokes flow is biharmonic, higher-order derivatives of the
ambient field decay faster than the field itself. Because of this, these series can also
be truncated and still produce reliable results.
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